Deelnemers

Heb je een vraag? Neem gerust contact met ons op.

 

Telefoon: 050 - 36 11 113 (werkdagen van 8.00 - 17.00 uur)

Contactformulier

Researchers

Do you have a question regarding working with Lifelines? Please contact us, we're happy to help you.

Contact us

Pers

We voorzien media graag van informatie en we behandelen graag verzoeken voor interviews, opnames en beeldmateriaal.

Stuur een e-mail

Contact

Noninvasive detection of any-stage cancer using free glycosaminoglycans

Cancer  mortality  is  exacerbated  by  late-stage  diagnosis.  Liquid  biopsies  based  on  genomic  biomarkers  can  noninvasively  diagnose  cancers.  However,  validation  stud-ies have reported ~10% sensitivity to detect stage I cancer in a screening population and  specific  types,  such  as  brain  or  genitourinary  tumors,  remain  undetectable.  We  investigated  urine  and  plasma  free  glycosaminoglycan  profiles  (GAGomes)  as  tumor  metabolism biomarkers for multi-cancer early detection (MCED) of 14 cancer types using 2,064 samples from 1,260 cancer or healthy subjects. We observed widespread cancer-specific changes in biofluidic GAGomes recapitulated in an in vivo cancer pro-gression model. We developed three machine learning models based on urine (Nurine = 220 cancer vs. 360 healthy) and plasma (Nplasma = 517 vs. 425) GAGomes that can detect any cancer with an area under the receiver operating characteristic curve of 0.83–0.93 with up to 62% sensitivity to stage I disease at 95% specificity. Undetected patients had a 39 to 50% lower risk of death. GAGomes predicted the putative cancer location with  89%  accuracy.  In  a  validation  study  on  a  screening-like  population  requiring  ≥  99% specificity, combined GAGomes predicted any cancer type with poor prognosis within 18 months with 43% sensitivity (21% in stage I; N = 121 and 49 cases). Overall, GAGomes appeared to be powerful MCED metabolic biomarkers, potentially doubling the number of stage I cancers detectable using genomic biomarkers.

Year of publication

2022

Journal

PNAS

Author(s)

Bratulic, S.
Limeta, A.
Dabestani, S.
Gatto, F.

Full publication

Click here to view the full publicationClick here to view the full publication

Tags