Cancer mortality is exacerbated by late-stage diagnosis. Liquid biopsies based on genomic biomarkers can noninvasively diagnose cancers. However, validation stud-ies have reported ~10% sensitivity to detect stage I cancer in a screening population and specific types, such as brain or genitourinary tumors, remain undetectable. We investigated urine and plasma free glycosaminoglycan profiles (GAGomes) as tumor metabolism biomarkers for multi-cancer early detection (MCED) of 14 cancer types using 2,064 samples from 1,260 cancer or healthy subjects. We observed widespread cancer-specific changes in biofluidic GAGomes recapitulated in an in vivo cancer pro-gression model. We developed three machine learning models based on urine (Nurine = 220 cancer vs. 360 healthy) and plasma (Nplasma = 517 vs. 425) GAGomes that can detect any cancer with an area under the receiver operating characteristic curve of 0.83–0.93 with up to 62% sensitivity to stage I disease at 95% specificity. Undetected patients had a 39 to 50% lower risk of death. GAGomes predicted the putative cancer location with 89% accuracy. In a validation study on a screening-like population requiring ≥ 99% specificity, combined GAGomes predicted any cancer type with poor prognosis within 18 months with 43% sensitivity (21% in stage I; N = 121 and 49 cases). Overall, GAGomes appeared to be powerful MCED metabolic biomarkers, potentially doubling the number of stage I cancers detectable using genomic biomarkers.
Noninvasive detection of any-stage cancer using free glycosaminoglycans
Year of publication
2022
Journal
PNAS
Author(s)
Bratulic, S.
Limeta, A.
Dabestani, S.
Gatto, F.
Full publication
Click here to view the full publicationClick here to view the full publication